Onko kaksiulotteisista materiaaleista ratkaisuksi tulevaisuuden mikroelektroniikan haasteisiin?

18.5.2021/Text: Miika Mattinen

25990af4cd918cc77f3421b1bd62c4b5

Mikroelektroniikka arjessa: nyt ja tulevaisuudessa

Mikroelektroniikan 1960-luvulta alkanut voittokulku on muokannut arkielämäämme lukuisin tavoin. Ilman mikroelektroniikkaa nykyisistä tietokoneista ja mobiililaitteista sekä internetistä ja sosiaalisesta mediasta voisimme vain haaveilla. Esimerkkinä uusista, kehitteillä olevista mikroelektroniikan sovelluksista on esineiden internet, jonka avulla voimme saada jatkuvasti yhteyden vaikka autoomme, lämpöpattereihimme, tai kotimme turvallisuutta valvoviin kameroihin – missä vain, milloin vain. Toisaalta mikroelektroniikan jatkuvasti lisääntyvä laskentateho mahdollistaa esimerkiksi laajennetun todellisuuden, jossa pyritään yhdistämään omien aistiemme ja teknologian parhaat puolet, sekä tekoälyn käytön lukuisissa sovellutuksissa lääkekehityksestä itseajaviin autoihin ja lentokoneisiin.

Kaksiulotteiset materiaalit – laboratoriosta teollisuuteen suomalaisen ALD-teknologian avulla?

Tulevaisuuden mikroelektroniikkasovellukset tarvitsevat läpimurtoja uusien materiaalien kehittämisessä sekä niiden valmistamisessa. Tutkimani kaksiulotteiset (2D) materiaalit ovat 2010-luvulla herättäneet suurta mielenkiintoa niin yliopistoissa kuin teollisuudessa niiden erinomaisten ominaisuuksien ansiosta. Näitä äärimmäisen ohuita materiaaleja voidaan käyttää vain yhden tai muutaman atomikerroksen paksuisina, siis sata tuhatta kertaa hiusta ohuempina, minkä ansiosta yksittäisestä elektroniikan komponentista voidaan tehdä entistäkin pienempi. Pienestä koostaan huolimatta – tai oikeastaan juuri sen vuoksi – suurena haasteena on 2D-materiaalien valmistus teollisuuteen soveltuvilla menetelmillä. Käyttämäni Suomessa kehitetty atomikerroskasvatusmenetelmä (ALD) mahdollistaa äärimmäisen hyvälaatuisten atomitason pinnoitteiden, ohutkalvojen, valmistamisen. ALD on jo useiden eri teollisuudenalojen käytössä, ja Suomessa on vahvaa osaamista niin ALD-kemian tutkimuksesta yliopistoissa kuin ALD-laitteistojen valmistamisesta sekä ALD-teknologian hyödyntämisestä erilaisissa sovelluksissa.

Lähdeaineista ohutkalvoihin ja sovelluksiin

Suurimpana tavoitteena tutkimuksessani on ollut erilaisten 2D-materiaalien valmistamiseen sopivien kemikaalien eli lähdeaineiden etsiminen. Tässä onkin onnistuttu mukavasti, sillä väitöskirjassani kehitin uudet ALD-prosessit viidelle puolijohtavalle 2D-materiaalille (HfS2, MoS2, SnS2, ZrS2 ja WS2). Näistä HfS2:lle ja ZrS2:lle kehitetyt prosessit olivat maailman ensimmäisiä. Lisäksi yhteistyökumppanien kanssa olemme osoittaneet, että materiaaleja voidaan käyttää transistoreissa ja valoilmaisimissa – molemmat tärkeitä elektroniikan komponentteja. Mielenkiintoisinta onkin ollut se, että olen saanut olla mukana koko materiaalinkehitysprosessissa uusien kemikaalien kehittämisestä kalvojen valmistamiseen ja sovelluskokeiden tekemiseen. Hienoa on ollut nähdä myös mielenkiinto tukimusta kohtaan niin tiedeyhteisössä kuin alan yritystenkin puolelta.

Miika Mattinen sai säätiön kannustusapurahan vuonna 2019. Mattinen väitteli tohtoriksi Helsingin yliopistossa huhtikuussa 2020.

Uusimmat artikkelit

Transient and stationary studies of avant garde catalysts and reactors: from microreactors to 3D printed catalyst elements

Kirjoittajalta Tekniikan edistämissäätiö / 21.2.2025

Transient and stationary studies of avant garde catalysts and reactors: from microreactors to 3D printed catalyst elements Luca Mastroianni   DLP 3D Printing and Microreactors: Revolutionizing the Chemical Industry Structured catalysts and reactors are at the heart of sustainable development. As the climate crisis intensifies, it is imperative to take immediate action to improve the…

Environmental Impacts of Processing Complex Cobalt Containing Raw Materials

Kirjoittajalta Tekniikan edistämissäätiö / 20.1.2025

Prosessimallinnus lisää tietoa metallien ympäristövaikutuksista Riina Aromaa           Prosessimallinnus lisää tietoa metallien ympäristövaikutuksista Yleistykset johtavat harhaan Monien metallien tarve kasvaa vihreän siirtymän mukana, kuten myös kiinnostus ympäristövaikutuksiin, joita niiden käyttö aiheuttaa. Metallituotteiden ympäristövaikutukset tulisi määrittää aina tapauskohtaisesti. Identtisten tuotteiden vaikutukset voivat vaihdella paljonkin muun muassa sen mukaan, millaisia prosesseja ja raaka-aineita…

Farmaseuttisten tablettien jatkuvatoiminen valmistus – Kaupallisesta erävalmistuksesta jatkuvatoimisen prosessoinnin tutkimukseen

Kirjoittajalta Tekniikan edistämissäätiö / 17.12.2024

Farmaseuttisten tablettien jatkuvatoiminen valmistus – Kaupallisesta erävalmistuksesta jatkuvatoimisen prosessoinnin tutkimukseen Jenna Lyytikäinen         Jatkuvatoiminen valmistus kiinnostaa myös lääketeollisuutta Jatkuvatoiminen prosessointi on käytössä useilla eri teollisuuden aloilla sen etujen ansiosta. Lääketeollisuus on monista eri syistä, kuten aiemmasta lääkeviranomaisten suhtautumisesta johtuen kuitenkin pitäytynyt perinteisessä erävalmistuksessa. Erävalmistus vaatii henkilökunnalta välituotteiden siirtoa, paljon tilaa ja monia…