Tehokkaampaa sähköntuotantoa yksityiskohtien ymmärryksen kautta

17.2.2021/Teksti: Jonne Niemi

Niemi_Jonne

Suuri osa maailman ja myös Suomen sähköntuotannosta toteutetaan polttoprosessien kautta. Sähköntuotanto polttoprosessien kautta on teoriassa yksinkertaista: Polttoaine palaa, jolloin vapautuu lämpöä. Lämmön avulla höyrystetään vettä ja höyry kuumennetaan usean sadan asteen lämpötilaan ja useiden kymmenien atmosfäärien paineeseen. Höyry johdetaan turbiinin, jossa höyryn annetaan laajentua. Höyry tekee työtä, joka saa turbiinin pyörimään. Turbiinin liike-energia muunnetaan sähköksi generaattorin avulla.
Kyseisen prosessin hyötysuhde riippuu merkittävästi siitä, kuinka kuumaksi höyry voidaan kuumentaa. Yleisesti hiiltä polttoaineenaan käyttävät voimalaitokset voivat tuottaa kuumempaa höyryä kuin biomassaa polttavat voimalaitokset, puhumattakaan jätteidenpolttolaitoksista. Syynä tähän ovat korkeanlämpötilan ruostumismekanismit ja polttoaineiden tuhkakemian vaikutus ruostumisnopeuteen.

Tuhka aiheuttaa ongelmia

Tietyt alkuaineet, kuten kloori, alkalimetallit ja raskasmetallit nopeuttavat ruostumista korkeissa lämpötiloissa. Juuri näitä alkuaineita löytyy esimerkiksi poltettavista jätteistä. Tästä syystä jätepolttolaitosten materiaalien lämpötilat pidetään matalalla. Ruostumiselle alttiita ovat varsinkin höyryn lämmittämiseen käytettävät lämmönvaihtimet, joiden sisällä virtaa höyryä.

Kyseessä on siis optimointiongelma: Höyrynlämpötila pitäisi saada mahdollisimman korkeaksi, jotta polttoaineesta saadaan mahdollisimman suuri hyöty, toisaalta höyryn lämpötilaa täytyy rajoittaa, jotta lämmönvaihtimet eivät ruostu puhki. Ruostumista voidaan myös hallita käyttämällä paremmin ruostumista kestäviä teräslaatuja. Kyseiset teräslaadut ovat tosin moninkertaisesti kalliimpia verrattuna huonommin ruostumista kestäviin. Tästä syystä parempaa terästä käytetään usein vain muutamissa valituissa kohdissa polttolaitoksissa.

Tuhkakemian ymmärtämisen kautta kohti kestävämpää sähköntuotantoa

Väitöskirjatyöni tarkoituksena oli tutkia yksityiskohtaisesti, mitä tuhkakerrostumissa tapahtuu lämmönvaihdinten pinnalla ja millainen vaikutus sillä on ruostumisen kannalta. Vastaavanlaisia tutkimuksia on aiemmin tehty polttolaitoksissa. Monimutkaiset olosuhteet kuitenkin tekevät yksityiskohtien tulkitsemisesta lähes mahdotonta. Tästä syystä väitöskirjatyössäni kokeet tehtiin pääasiallisesti laboratorio-olosuhteissa, jolloin monimutkainen ja monitahoinen systeemi saadaan yksinkertaistettua. Lisäksi eri muuttujia (esim. tuhkan koostumusta ja materiaalien lämpötilaa) voidaan hallita ja niiden vaikutusta testata kontrolloidusti.

Väitöskirjassa tunnistettiin onnistuneesti, miten esimerkiksi kloori voi kulkeutua teräksen pinnalle, ja täten nopeuttaa sen ruostumista. Kulkeutumismekanismin ymmärtäminen helpottaa uusien polttolaitosten suunnittelua ja edistää jo olemassa olevien ongelmien syiden tunnistamista. Tehokkaammat voimalaitokset tuottavat enemmän sähköä samalla määrällä polttoainetta. Tämän lisäksi yksityiskohtaisen tuhkakemian ymmärtäminen mahdollistaa myös uusien ja haastavien polttoaineiden ja polttoaineyhdistelmien käytön sähköntuotannossa.

https://doi.org/10.1021/acs.energyfuels.8b01722
https://doi.org/10.1021/acs.energyfuels.8b04199
http://urn.fi/URN:ISBN:978-952-12-3866-6

Uusimmat artikkelit

Farmaseuttisten tablettien jatkuvatoiminen valmistus – Kaupallisesta erävalmistuksesta jatkuvatoimisen prosessoinnin tutkimukseen

Kirjoittajalta Tekniikan edistämissäätiö / 17.12.2024

Farmaseuttisten tablettien jatkuvatoiminen valmistus – Kaupallisesta erävalmistuksesta jatkuvatoimisen prosessoinnin tutkimukseen Jenna Lyytikäinen         Jatkuvatoiminen valmistus kiinnostaa myös lääketeollisuutta Jatkuvatoiminen prosessointi on käytössä useilla eri teollisuuden aloilla sen etujen ansiosta. Lääketeollisuus on monista eri syistä, kuten aiemmasta lääkeviranomaisten suhtautumisesta johtuen kuitenkin pitäytynyt perinteisessä erävalmistuksessa. Erävalmistus vaatii henkilökunnalta välituotteiden siirtoa, paljon tilaa ja monia…

Molybdenum sulfides with bismuth halide perovskites for better photocatalysis

Kirjoittajalta Tekniikan edistämissäätiö / 20.11.2024

Molybdenum sulfides with bismuth halide perovskites for better photocatalysis  By He Zhao         Clean hydrogen from photocatalysis Hydrogen is regarded as a promising energy carrier for the future world. Solar-driven photocatalysis provides a cleaner and more sustainable approach for hydrogen production, which would not produce any carbon footprint theoretically. This reaction of…

Spatiotemporal probing and control of nonlinear optical phenomena in 2D materials using unconventional states of polarization (ARTEMIS)

Kirjoittajalta Tekniikan edistämissäätiö / 25.10.2024

Spatiotemporal probing and control of nonlinear optical phenomena in 2D materials using unconventional states of polarization (ARTEMIS)  By Riya Varghese   The first year of my doctoral studies deals with the learning and acquiring of the necessary experimental skills needed to accomplish the proposed research. For example, I received training on the use of several…