Tekoäly auttaa patologia

24.9.2019/Text: Kimmo Kartasalo

Blogi_Kartasalo_Kimmo_TES2018

Onko koneellisesti suoritettu syöpädiagnoosi osoitus muovikuorien sisällä surisevasta älystä? Tämä kysymys on muodostunut kahvipöydän kestosuosikiksi kehittäessämme koneoppimismenetelmää eturauhassyövän diagnosoimiseksi digitalisoiduista koepaloista. Niin sanottuihin syviin neuroverkkoihin pohjautuvat koneoppimisen menetelmät ovat viime vuosina näyttäneet kyntensä niin autoilussa kuin lautapeleissä – ja valloitettavia ongelmia ammennetaankin väitöskirjatyöni tapaan yhä enemmän myös lääketieteestä.

 

Mikroskooppilaseista biteiksi

Koneoppimisessa tutkittavasta ilmiöstä kerätään esimerkkidataa, jonka avulla muodostetaan ilmiötä kuvaava laskennallinen malli. Neuroverkkojen ero perinteiseen koneoppimiseen kiteytyy siihen, että neuroverkkomallit ”oppivat” itse, ilman ihmissuunnittelijan ennalta määräämiä sääntöjä, mikä datassa on huomionarvoista. Oma tutkimukseni keskittyy neuroverkkojen hyödyntämiseen alati yleistyvässä digitaalisessa patologiassa. Tavanomaisen mikroskoopilla tarkastelun sijaan digitaalisessa patologiassa kudosnäytteet skannataan erittäin korkearesoluutioisiksi kuviksi. Skannattuja näytteitä, esimerkiksi koepaloja epäillystä syövästä, voidaan tutkia, säilyttää ja analysoida digitaalisesti. Osana terveydenhuollon laajempaa digitalisaatiota tämä kehitys tarjoaa hedelmällisen kasvualustan uusille koneoppimisratkaisuille.

 

Pohjoismaista yhteistyötä ja numeronmurskausta

Osana väitöskirjatyötäni olen päässyt mukaan eturauhassyövän diagnostiikkaa koskevaan Tampereen yliopiston, Uppsalan yliopiston ja Karoliinisen instituutin yhteisprojektiin. Eturauhassyövän yleisyyden ja patologipulan vuoksi koepalojen arviointi on kasvava rasite laboratorioille, joten prosessin tehostamiselle on suuri tarve ympäri maailman. Tutkimuksen pohjana on mittava ruotsalainen aineisto, joka kattaa kymmeniä tuhansia eturauhasen koepaloja. Kehittämälläni algoritmilla kuvat ja niiden sisältämät patologin tekemät merkinnät saadaan käsiteltyä neuroverkkolaskennan kannalta käyttökelpoiseen muotoon. Tätä seuraava opetusprosessi edellyttää suurteholaskentaa grafiikkaprosessoreilla. Suomessa on onneksi sisäistetty järeän laskentakapasiteetin merkitys tutkimukselle – hatunnosto CSC:lle sekä Tampereen tieteellisen laskennan keskukselle. Opetuksen tuloksena saadaan neuroverkkomalli, joka jäljittelee huippupatologin toimintaa ja kykenee arvioimaan, sisältääkö koepala eturauhasyöpää. Leijonanosa projektimme kehitystyöstä tehtiin Uppsalaan vuonna 2018 suuntautuneen tutkijavaihtojaksoni aikana. Tiivis yhteistyö ruotsalaisten kanssa on toiminut kaikin puolin mallikkaasti ja sivutuotteena kouluruotsinikin on hitusen vertynyt.

 

Tekolääkäriä saadaan vielä odottaa

Palatakseni alun kysymykseen: onko onnistunut syöpädiagnoosi osoitus älystä? Ehkä ei, mutta huolellisesta tutkimus- ja insinöörityöstä kylläkin. Oli sitten mitä mieltä hyvänsä tekoälyn terminologiasta tai filosofisista ulottuvuuksista, nykyaikaisen koneoppimisen voittokulkua ei käy kieltäminen. Työn alla olevan tutkimuksemme myötä eturauhassyövän diagnosointi voidaan toivottavasti pian lisätä menestyksekkäiden neuroverkkosovellusten ketjuun. Neuroverkkokaan ei kuitenkaan ole kaikki perinteisen koneoppimisen ongelmat ohittava ”hopealuoti”, ja lääkärinpapereiden luovuttaminen itsenäisesti diagnooseja suorittavalle koneälylle kuulostaa vielä tällä hetkellä utopialta (tai ainakin potilasturvallisuuden kannalta vastuuttomalta). Tilannetta voi verrata tie- tai lentoliikenteeseen: vakionopeudensäädin tai autopilotti voi olla verraton apu, mutta kapteenillekin on yhä paikkansa. Tekoälyn hyödyntäminen tähän tapaan kustannustehokkuutta ja turvallisuutta lisäävänä patologin apurina voi olla todellisuutta piankin. Tämän saavuttaminen edellyttää vielä jatkotutkimuksia koskien tekoälyn toimivuutta arkipäivän terveydenhuollossa  – ja ennen kaikkea lisää perinpohjaista insinöörityötä.


Kirjoittaja Kimmo Kartasalo työskentelee väitöskirjatutkijana Tampereen yliopiston Lääketieteen ja terveysteknologian tiedekunnassa, Biokuvainformatiikan tutkimusryhmässä. Hän sai Tekniikan edistämissäätiöltä apurahaa vuonna 2018.

Uusimmat artikkelit

Edelläkävijäyritykset sisällyttävät ympäristönäkökulmia investointipäätöksiinsä

Kirjoittajalta Tekniikan edistämissäätiö / 6.10.2022

Edelläkävijäyritykset sisällyttävät ympäristönäkökulmia investointipäätöksiinsä 6.10.2022/Teksti: Natalia Saukkonen Muutos kohti kestävämpää yhteiskuntaa vaikuttaa välttämättömältä, kun tarkastellaan ympäristön huononevaa tilaa. Edelläkävijäyritykset voivat osaltaan edistää kestävyysmuutosta investoimalla ympäristöystävällisempiin teknologioihin. Tutkin väitöskirjassani yritysten investointipäätöksiä ja ympäristönäkökulmien sisällyttämistä niihin. Ilmastonmuutos ja kaupunkien huono ilmanlaatu ovat esimerkkejä ongelmista, joiden ratkaisemiseksi tarvitaan kestävyysmuutosta. Käytännössä muutos tarkoittaa esimerkiksi maaliikenteen infrastruktuurin, käyttövoimien ja ajokäytäntöjen…

Monimutkaisen projektin johtaminen vaatii systemaattista yhteen hiileen puhaltamista

Kirjoittajalta Tekniikan edistämissäätiö / 22.9.2022

Monimutkaisen projektin johtaminen vaatii systemaattista yhteen hiileen puhaltamista 22.9.2022/Teksti: Laura Saukko Lehdistössä olemme usein saaneet lukea esimerkiksi suurten infrastruktuuri- tai rakennusprojektien kustannusten karkaamisesta ja muista epäkohdista projektien toteutuksissa. Tiedetään, että projektin toimijoiden välisen yhteistoiminnan avulla saavutetaan huomattavasti aiempaa parempia lopputuloksia. Käytännön askelmerkeissä siihen, kuinka sujuvaan yhteistoimintaan päästään, on kuitenkin vielä selvitettävää. Väitöstutkimuksessani pureuduin niihin konkreettisiin…

Stacked Cell Culture Platform: A Step Closer to Biologically Relevant in vitro Studies

Kirjoittajalta Tekniikan edistämissäätiö / 6.9.2022

Stacked Cell Culture Platform: A Step Closer to Biologically Relevant in vitro Studies  6.9.2022/Text: Diosangeles Soto Veliz Traditional cell culture platforms consist mostly of flat plastic surfaces. However, the real cellular environment is far from uniform. Cells grow naturally on various kind of surfaces: smooth, fibrous, soft, hard, porous, and all kinds of variations found…