Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen

9.10.2019/Text: Mikael Ritamäki

Mikael Ritamäki

Kevyempää tehoelektroniikkaa paremmilla muoveilla

Muovikondensaattoreita käytetään esimerkiksi tehoelektroniikassa, jota käytetään uusiutuvan sähköenergian siirtoon vaikkapa merituulivoimapuistoista kulutuskeskuksiin. Nykyisellä tekniikalla toteutetut muovikondensaattorit ovat luotettavia mutta varsin isoja ja painavia: parempia sähköeristemateriaaleja kehitetään, jotta kondensaattoreita käyttävistä laitteista saataisiin pienempiä ja kevyempiä. Varsinkin sähköverkkosovelluksissa muovikondensaattoreita vaaditaan pitkää, kymmenien vuosien käyttöikää, joten uusia materiaaleja kehitettäessä onkin äärimmäisen tärkeää varmistaa, että ne ovat vähintään yhtä luotettavia, ja mielellään toki vieläkin pitkäikäisempiä, kuin perinteiset materiaalit. Kelvatakseen kondensaattorieristeeksi muovin täytyy olla monella mittarilla mitattuna hyvä; yksikin huono ominaisuus, kuten taipumus lämmetä liikaa, voi estää muuten erinomaisen muovin käytön täysin.

Luottavuustestausta heti tuotekehityksen ensimetreillä

Väitöskirjatutkimukseni tavoitteena on laajentaa silloisen TTY:n eli nykyisen Tampereen yliopiston suurjännitetekniikan tutkimusryhmän käytössä olevaa mittausarsenaalia niin, että kaikki kondensaattorieristeiden loppukäyttökohteen kannalta tärkeät sähköiset ominaisuudet voitaisiin luotettavasti mitata jo tuotekehityksen alkuvaiheessa. Näin resurssit voitaisiin kohdentaa lupaavimpien materiaalien jatkokehitykseen. Nykyiset kondensaattorieristeet ovat erittäin pienihäviöisiä ja niiden läpilyöntilujuus on korkea, minkä takia diagnostisten menetelmien kehittäminen niille on hyvin vaativaa. Suurimpia haasteistani oli kehittää helposti toistettavat menetelmät laboratorio-asteen koe-erien luotettavuuden ja häviöllisyyden määrittämiseen. Standardoitujen luotettavuustestien käyttö olisi edellyttänyt ison mittakaavan kalvovalmistusta, joka tuotekehityksen alkuvaiheessa ei ollut mielekästä, koska tuolloin ”kalvokandidaatteja” on vielä lukuisia. Suurin väitöstyössä ottamani edistysaskel tapahtuikin, kun kehitin testijärjestelmän, jolla laboratorio-asteen pieniä eristekalvoja voidaan vanhentaa oikeita sovelluskohteita mukailevassa sähkö-lämpörasituksessa. Yksi tutkimukseni kohokohta olikin, kun menetelmää käsittelevä artikkelini julkaistiin sähköeristysalan arvostetuimpiin kuuluvassa vertaisarvioidussa tieteellisessä lehdessä. Lisäksi kehitin toki menetelmiä kondensaattoreiden muidenkin eristeominaisuuksien mittaamiseen oikeissa käyttölämpötiloissa.

Pikkutarkkaa näpertelyä mikrometriluokan kalvojen kanssa

Tutkimani muovikalvot ovat paksuudeltaan kymmenen mikrometrin (millin tuhannesosan) molemmin puolin, ja niiden käsittely vaati vakaita käsiä ja kieltämättä joskus myös hyviä hermoja. Vertailun vuoksi tavallinen kopiopaperi on noin kymmenen kertaa paksumpaa! Osan näytteenvalmisteluista pääsinkin tekemään silloisen Tampereen teknillisen yliopiston uudenkarheassa puhdastilassa. Työssäni nautinnollisinta olikin sen monipuolisuus, pääsin tapaamaan sekä kalvovalmistajia että loppukäyttäjiä, käymään tutkijavaihdossa Italiassa Bolognan yliopistossa ja tekemään kaikkea konepiirustuksesta mittausautomaatioon ja tulosten tilastolliseen analyysiin.

Mikael Ritamäki väitteli Tampereen Yliopistosta tekniikan tohtoriksi syksyllä 2019. Hän sai Tekniikan edistämissäätiöltä apurahaa jatko-opintoihinsa Tampereen teknillisessä yliopistossa vuonna 2018.

Linkit:

Tutustu suurjännitetutkimusryhmämme monipuoliseen toimintaan täällä: https://www.tuni.fi/en/research/high-voltage-engineering

Väitöskirjaan voi tutustua osoitteessa http://urn.fi/URN:ISBN:978-952-03-1176-6

Uusimmat artikkelit

Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen

Kirjoittajalta Tekniikan edistämissäätiö / 9.10.2019

Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen 9.10.2019/Text: Mikael Ritamäki Kevyempää tehoelektroniikkaa paremmilla muoveilla Muovikondensaattoreita käytetään esimerkiksi tehoelektroniikassa, jota käytetään uusiutuvan sähköenergian siirtoon vaikkapa merituulivoimapuistoista kulutuskeskuksiin. Nykyisellä tekniikalla toteutetut muovikondensaattorit ovat luotettavia mutta varsin isoja ja painavia: parempia sähköeristemateriaaleja kehitetään, jotta kondensaattoreita käyttävistä laitteista saataisiin pienempiä ja kevyempiä. Varsinkin sähköverkkosovelluksissa muovikondensaattoreita vaaditaan pitkää, kymmenien vuosien käyttöikää, joten uusia … Jatka artikkeliin Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen

Bio-based thin-film structures to tackle the growing menace of plastics

Kirjoittajalta Tekniikan edistämissäätiö / 30.9.2019

Bio-based thin-film structures to tackle the growing menace of plastics 30.9.2019 / text: Aayush Jaiswal The world is turning into a global village and consequently, food products from around the world are becoming ubiquitous in the store where you buy your grocery every week. Have you ever wondered what keeps these products fresh and delicious? … Jatka artikkeliin Bio-based thin-film structures to tackle the growing menace of plastics

Tekoäly auttaa patologia

Kirjoittajalta Tekniikan edistämissäätiö / 24.9.2019

Tekoäly auttaa patologia 24.9.2019/Text: Kimmo Kartasalo Onko koneellisesti suoritettu syöpädiagnoosi osoitus muovikuorien sisällä surisevasta älystä? Tämä kysymys on muodostunut kahvipöydän kestosuosikiksi kehittäessämme koneoppimismenetelmää eturauhassyövän diagnosoimiseksi digitalisoiduista koepaloista. Niin sanottuihin syviin neuroverkkoihin pohjautuvat koneoppimisen menetelmät ovat viime vuosina näyttäneet kyntensä niin autoilussa kuin lautapeleissä – ja valloitettavia ongelmia ammennetaankin väitöskirjatyöni tapaan yhä enemmän myös lääketieteestä.   … Jatka artikkeliin Tekoäly auttaa patologia

Bio-based thin-film structures to tackle the growing menace of plastics

30.9.2019 / text: Aayush Jaiswal

aayush

The world is turning into a global village and consequently, food products from around the world are becoming ubiquitous in the store where you buy your grocery every week. Have you ever wondered what keeps these products fresh and delicious? The answer lies in the product packaging. A package’s importance is often neglected but a lot of science goes into developing that fancy trivial package that often charms you into making buying decisions.

In today’s world, most of the food packaging utilizes petroleum-derived plastics in some form. Usually, the plastic is visible in the package and if not, it might lie as a thin layer under the top layers made from materials like paperboard and metal foils. Due to the rampant use of petroleum-derived plastics in packaging, our environment lies in a grave danger. The amount of plastics being produced for packaging purpose was approximately 161 million tons in 2017 and the amount of plastic waste entering the planet’s oceans annually worldwide was estimated to be 8 million tons. These figures, already gargantuan, are expected to rise rapidly if immediate measures are not taken. We cannot turn a blind eye to the menace of plastics in packaging anymore. We must look for bio-based solutions which are produced, consumed and recycled responsibly.

What does it take to get rid of plastics?

If it were so straightforward to replace plastics with some other biodegradable material, giving the same performance as plastics, it would have been done already. Current challenges in replacing plastics are:

  • Common packaging plastics like PE, PP, PS, etc. are extremely cheap.
  • The processing technologies for plastics such as, extrusion and injection moulding, are highly developed. Replacing a high-end and mature industrial technology is difficult.
  • We don’t have materials that can match or outperform plastics in the properties required by the packaging industry. Such properties include barrier functions like moisture, oil and gas barrier and the unique strength and flexibility offered by plastics.

Hence, the quest to find a material which can offer the demanded properties is on, and nanocellulose has been identified as a candidate material.

What is nanocellulose?

Nanocellulose is obtained by breaking down cellulose fibers (from wood or plants) to the nanoscale size through mechanical and/or chemical treatment. This nanomaterial possess excellent film-forming properties and is non-toxic and 100% biodegradable. Nanocellulose films, even as thin as human hair, exhibit excellent barrier against gas and grease, are strong, flexible, and transparent and hence, have been the center of attention of researchers around the world for the last decade. The production of such films in high-speed industrial processes has been an obstacle to commercialization and my research focuses on that.

But…..You don’t need superpowers to save the planet!

While nanocellulose-based packaging would still take some time to enter the grocery store, we need to play our small part in protecting the environment. Every individual must take responsibility for the waste they produce in everyday life and aim for as proper recycling as possible. This requires alterations in our attitude and habits but we must realize that resources on our planet are limited and we need to live in harmony with nature. We shouldn’t wait for a magical technology to do it for us, change comes from within and we must bring about this change.

Further reading:

  1. Fast facts about plastic pollution

  2. Continuous roll-to-roll coating of cellulose nanocrystals onto paperboard

 Aayush Kumar Jaiswal is a master’s degree student at the Department of Chemical Engineering, Åbo Akademi University. His research deals with development of technologies enabling the production of thin-film structures from wood-based materials. He received a grant from Tekniikan edistämissäätiö in 2018.

Uusimmat artikkelit

Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen

Kirjoittajalta Tekniikan edistämissäätiö / 9.10.2019

Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen 9.10.2019/Text: Mikael Ritamäki Kevyempää tehoelektroniikkaa paremmilla muoveilla Muovikondensaattoreita käytetään esimerkiksi tehoelektroniikassa, jota käytetään uusiutuvan sähköenergian siirtoon vaikkapa merituulivoimapuistoista kulutuskeskuksiin. Nykyisellä tekniikalla toteutetut muovikondensaattorit ovat luotettavia mutta varsin isoja ja painavia: parempia sähköeristemateriaaleja kehitetään, jotta kondensaattoreita käyttävistä laitteista saataisiin pienempiä ja kevyempiä. Varsinkin sähköverkkosovelluksissa muovikondensaattoreita vaaditaan pitkää, kymmenien vuosien käyttöikää, joten uusia … Jatka artikkeliin Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen

Bio-based thin-film structures to tackle the growing menace of plastics

Kirjoittajalta Tekniikan edistämissäätiö / 30.9.2019

Bio-based thin-film structures to tackle the growing menace of plastics 30.9.2019 / text: Aayush Jaiswal The world is turning into a global village and consequently, food products from around the world are becoming ubiquitous in the store where you buy your grocery every week. Have you ever wondered what keeps these products fresh and delicious? … Jatka artikkeliin Bio-based thin-film structures to tackle the growing menace of plastics

Tekoäly auttaa patologia

Kirjoittajalta Tekniikan edistämissäätiö / 24.9.2019

Tekoäly auttaa patologia 24.9.2019/Text: Kimmo Kartasalo Onko koneellisesti suoritettu syöpädiagnoosi osoitus muovikuorien sisällä surisevasta älystä? Tämä kysymys on muodostunut kahvipöydän kestosuosikiksi kehittäessämme koneoppimismenetelmää eturauhassyövän diagnosoimiseksi digitalisoiduista koepaloista. Niin sanottuihin syviin neuroverkkoihin pohjautuvat koneoppimisen menetelmät ovat viime vuosina näyttäneet kyntensä niin autoilussa kuin lautapeleissä – ja valloitettavia ongelmia ammennetaankin väitöskirjatyöni tapaan yhä enemmän myös lääketieteestä.   … Jatka artikkeliin Tekoäly auttaa patologia

Tekoäly auttaa patologia

24.9.2019/Text: Kimmo Kartasalo

Blogi_Kartasalo_Kimmo_TES2018

Onko koneellisesti suoritettu syöpädiagnoosi osoitus muovikuorien sisällä surisevasta älystä? Tämä kysymys on muodostunut kahvipöydän kestosuosikiksi kehittäessämme koneoppimismenetelmää eturauhassyövän diagnosoimiseksi digitalisoiduista koepaloista. Niin sanottuihin syviin neuroverkkoihin pohjautuvat koneoppimisen menetelmät ovat viime vuosina näyttäneet kyntensä niin autoilussa kuin lautapeleissä – ja valloitettavia ongelmia ammennetaankin väitöskirjatyöni tapaan yhä enemmän myös lääketieteestä.

 

Mikroskooppilaseista biteiksi

Koneoppimisessa tutkittavasta ilmiöstä kerätään esimerkkidataa, jonka avulla muodostetaan ilmiötä kuvaava laskennallinen malli. Neuroverkkojen ero perinteiseen koneoppimiseen kiteytyy siihen, että neuroverkkomallit ”oppivat” itse, ilman ihmissuunnittelijan ennalta määräämiä sääntöjä, mikä datassa on huomionarvoista. Oma tutkimukseni keskittyy neuroverkkojen hyödyntämiseen alati yleistyvässä digitaalisessa patologiassa. Tavanomaisen mikroskoopilla tarkastelun sijaan digitaalisessa patologiassa kudosnäytteet skannataan erittäin korkearesoluutioisiksi kuviksi. Skannattuja näytteitä, esimerkiksi koepaloja epäillystä syövästä, voidaan tutkia, säilyttää ja analysoida digitaalisesti. Osana terveydenhuollon laajempaa digitalisaatiota tämä kehitys tarjoaa hedelmällisen kasvualustan uusille koneoppimisratkaisuille.

 

Pohjoismaista yhteistyötä ja numeronmurskausta

Osana väitöskirjatyötäni olen päässyt mukaan eturauhassyövän diagnostiikkaa koskevaan Tampereen yliopiston, Uppsalan yliopiston ja Karoliinisen instituutin yhteisprojektiin. Eturauhassyövän yleisyyden ja patologipulan vuoksi koepalojen arviointi on kasvava rasite laboratorioille, joten prosessin tehostamiselle on suuri tarve ympäri maailman. Tutkimuksen pohjana on mittava ruotsalainen aineisto, joka kattaa kymmeniä tuhansia eturauhasen koepaloja. Kehittämälläni algoritmilla kuvat ja niiden sisältämät patologin tekemät merkinnät saadaan käsiteltyä neuroverkkolaskennan kannalta käyttökelpoiseen muotoon. Tätä seuraava opetusprosessi edellyttää suurteholaskentaa grafiikkaprosessoreilla. Suomessa on onneksi sisäistetty järeän laskentakapasiteetin merkitys tutkimukselle – hatunnosto CSC:lle sekä Tampereen tieteellisen laskennan keskukselle. Opetuksen tuloksena saadaan neuroverkkomalli, joka jäljittelee huippupatologin toimintaa ja kykenee arvioimaan, sisältääkö koepala eturauhasyöpää. Leijonanosa projektimme kehitystyöstä tehtiin Uppsalaan vuonna 2018 suuntautuneen tutkijavaihtojaksoni aikana. Tiivis yhteistyö ruotsalaisten kanssa on toiminut kaikin puolin mallikkaasti ja sivutuotteena kouluruotsinikin on hitusen vertynyt.

 

Tekolääkäriä saadaan vielä odottaa

Palatakseni alun kysymykseen: onko onnistunut syöpädiagnoosi osoitus älystä? Ehkä ei, mutta huolellisesta tutkimus- ja insinöörityöstä kylläkin. Oli sitten mitä mieltä hyvänsä tekoälyn terminologiasta tai filosofisista ulottuvuuksista, nykyaikaisen koneoppimisen voittokulkua ei käy kieltäminen. Työn alla olevan tutkimuksemme myötä eturauhassyövän diagnosointi voidaan toivottavasti pian lisätä menestyksekkäiden neuroverkkosovellusten ketjuun. Neuroverkkokaan ei kuitenkaan ole kaikki perinteisen koneoppimisen ongelmat ohittava ”hopealuoti”, ja lääkärinpapereiden luovuttaminen itsenäisesti diagnooseja suorittavalle koneälylle kuulostaa vielä tällä hetkellä utopialta (tai ainakin potilasturvallisuuden kannalta vastuuttomalta). Tilannetta voi verrata tie- tai lentoliikenteeseen: vakionopeudensäädin tai autopilotti voi olla verraton apu, mutta kapteenillekin on yhä paikkansa. Tekoälyn hyödyntäminen tähän tapaan kustannustehokkuutta ja turvallisuutta lisäävänä patologin apurina voi olla todellisuutta piankin. Tämän saavuttaminen edellyttää vielä jatkotutkimuksia koskien tekoälyn toimivuutta arkipäivän terveydenhuollossa  – ja ennen kaikkea lisää perinpohjaista insinöörityötä.


Kirjoittaja Kimmo Kartasalo työskentelee väitöskirjatutkijana Tampereen yliopiston Lääketieteen ja terveysteknologian tiedekunnassa, Biokuvainformatiikan tutkimusryhmässä. Hän sai Tekniikan edistämissäätiöltä apurahaa vuonna 2018.

Uusimmat artikkelit

Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen

Kirjoittajalta Tekniikan edistämissäätiö / 9.10.2019

Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen 9.10.2019/Text: Mikael Ritamäki Kevyempää tehoelektroniikkaa paremmilla muoveilla Muovikondensaattoreita käytetään esimerkiksi tehoelektroniikassa, jota käytetään uusiutuvan sähköenergian siirtoon vaikkapa merituulivoimapuistoista kulutuskeskuksiin. Nykyisellä tekniikalla toteutetut muovikondensaattorit ovat luotettavia mutta varsin isoja ja painavia: parempia sähköeristemateriaaleja kehitetään, jotta kondensaattoreita käyttävistä laitteista saataisiin pienempiä ja kevyempiä. Varsinkin sähköverkkosovelluksissa muovikondensaattoreita vaaditaan pitkää, kymmenien vuosien käyttöikää, joten uusia … Jatka artikkeliin Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen

Bio-based thin-film structures to tackle the growing menace of plastics

Kirjoittajalta Tekniikan edistämissäätiö / 30.9.2019

Bio-based thin-film structures to tackle the growing menace of plastics 30.9.2019 / text: Aayush Jaiswal The world is turning into a global village and consequently, food products from around the world are becoming ubiquitous in the store where you buy your grocery every week. Have you ever wondered what keeps these products fresh and delicious? … Jatka artikkeliin Bio-based thin-film structures to tackle the growing menace of plastics

Tekoäly auttaa patologia

Kirjoittajalta Tekniikan edistämissäätiö / 24.9.2019

Tekoäly auttaa patologia 24.9.2019/Text: Kimmo Kartasalo Onko koneellisesti suoritettu syöpädiagnoosi osoitus muovikuorien sisällä surisevasta älystä? Tämä kysymys on muodostunut kahvipöydän kestosuosikiksi kehittäessämme koneoppimismenetelmää eturauhassyövän diagnosoimiseksi digitalisoiduista koepaloista. Niin sanottuihin syviin neuroverkkoihin pohjautuvat koneoppimisen menetelmät ovat viime vuosina näyttäneet kyntensä niin autoilussa kuin lautapeleissä – ja valloitettavia ongelmia ammennetaankin väitöskirjatyöni tapaan yhä enemmän myös lääketieteestä.   … Jatka artikkeliin Tekoäly auttaa patologia

Nanometrikokoluokan ohutkalvomateriaalien monet sovelluskohteet

3.9.2019/Text: Jenna Penttinen

Ohutkalvon paksuus määritetään alhaisen tulokulman röntgendiffraktiolla. Näitä mittauksia teemme päivittäin.

Olemme keskittyneet laajasti uudenlaisiin ohutkalvorakenteisiin epäorgaanisen kemian tutkimusryhmässämme. Oman väitöskirjani aihe on huokoiset ja kiteiset metalli-orgaanisen runkorakenteen (metal-organic framework, MOF) ohutkalvot, jotka koostuvat epäorgaanisista metallikeskuksista ja orgaanisista ligandeista muodostaen kolmiulotteisen verkoston. Keskityn kaikista elektropositiivisimpiin alkuaineisiin, kuten litiumiin, natriumiin ja magnesiumiin, koska ne muodostavat ionisidoksen orgaanisen molekyylin hapen kanssa. Ionisidoksien ansiosta rakenne on taipuisa muuttamaan kiderakennettaan ja hydrolysoituu helpommin, jolloin MOF-materiaaleja voidaan hyödyntää antureissa ja kaasuabsorptiossa. Atomi- ja molekyylikerroskasvatusmenetelmä (atomic and molecular layer deposition, ALD/MLD) mahdollistaa huokoisten ja kiteisten ohutkalvojen kasvatuksen nanometrien tarkkuudella.

Kuva. ALD/MLD-menetelmä perustuu kaasufaasissa tapahtuviin saturoituviin pintareaktioihin. 1) Epäorgaaninen lähtöaine reagoi pinnan kanssa. 2) Orgaaninen lähtöaine reagoi pinnan kanssa. 3) Kalvon paksuutta kontrolloidaan toistamalla vaiheet 1 ja 2 tarvittava määrä.

ALD-reaktorissa 8 tunnin työpäivän aikana ehtii kasvaa 100 nm paksuinen kalvo. Tänä aikana hiuksesi ja kyntesi ovat kasvaneet kymmeniä kertoja enemmän pituutta.

ALD/MLD-menetelmällä kasvatetuilla ohutkalvoilla on laajat käyttömahdollisuudet tulevaisuuden sovelluksissa. Meidän ryhmässämme olemme tutkineet esimerkiksi elektrodimateriaaleja mikroakkuihin; luminesoivia kalvoja; ohutkalvorakenteita, jotka reagoivat ulkoiseen ärsykkeeseen, kuten UV-valoon; sekä termosähköisiä ohutkalvoja, jotka johtavat hyvin lämpöä ja huonosti sähköä.

ALD-menetelmällä kasvatetut ohutkalvot sopivat sovelluskohteisiin, joiden vaatimuksena on erittäin tasainen ja laadukas ohutkalvo kolmiulotteisilla pinnoillakin. ALD-menetelmä on hidas, mutta etuna on ohutkalvon paksuuden tarkka kontrollointi nanometrin tarkkuudella. Hidas ohutkalvojen kasvatusmenetelmä soveltuu elektroniikkateollisuuden tarpeisiin. Lisäksi, ALD/MLD-menetelmällä pystytään kasvattamaan ohutkalvorakenteita, joita ei muilla menetelmillä pystytä valmistamaan ilman liuotinmolekyylejä.

ALD/MLD-hybridikalvojen julkaisutahti kasvaa joka vuosi ja on innostavaa olla mukana osana tätä alati kasvavaa alaa. Jatko-opiskelijana epäorgaanisen kemian ryhmässä olen saanut työskennellä monikulttuurisessa työympäristössä, jossa tutkijoita on kahdeksasta eri maasta, ja olen lisäksi päässyt esittämään tutkimustuloksiamme lukuisille konferenssimatkoille ympäri maailmaa.

Ohutkalvon paksuus määritetään alhaisen tulokulman röntgendiffraktiolla. Näitä mittauksia teemme päivittäin.

 

 

 

 

 

Penttinen, M. Nisula, and M. Karppinen, “Atomic/Molecular Layer Deposition of s-Block Metal Carboxylate Coordination Network Thin Films,” Chem. - A Eur. J., vol. 23, no. 72, pp. 18225–18231, Dec. 2017.

https://doi.org/10.1002/chem.201703704

Jenna Penttinen työskentelee Aalto-yliopiston kemian tekniikan korkeakoulussa tohtorikoulutettavana. Hän sai Tekniikan edistämissäätiöltä kannustusapurahan jatko-opintoihinsa Aalto-yliopistossa vuonna 2018.

 

Uusimmat artikkelit

Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen

Kirjoittajalta Tekniikan edistämissäätiö / 9.10.2019

Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen 9.10.2019/Text: Mikael Ritamäki Kevyempää tehoelektroniikkaa paremmilla muoveilla Muovikondensaattoreita käytetään esimerkiksi tehoelektroniikassa, jota käytetään uusiutuvan sähköenergian siirtoon vaikkapa merituulivoimapuistoista kulutuskeskuksiin. Nykyisellä tekniikalla toteutetut muovikondensaattorit ovat luotettavia mutta varsin isoja ja painavia: parempia sähköeristemateriaaleja kehitetään, jotta kondensaattoreita käyttävistä laitteista saataisiin pienempiä ja kevyempiä. Varsinkin sähköverkkosovelluksissa muovikondensaattoreita vaaditaan pitkää, kymmenien vuosien käyttöikää, joten uusia … Jatka artikkeliin Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen

Bio-based thin-film structures to tackle the growing menace of plastics

Kirjoittajalta Tekniikan edistämissäätiö / 30.9.2019

Bio-based thin-film structures to tackle the growing menace of plastics 30.9.2019 / text: Aayush Jaiswal The world is turning into a global village and consequently, food products from around the world are becoming ubiquitous in the store where you buy your grocery every week. Have you ever wondered what keeps these products fresh and delicious? … Jatka artikkeliin Bio-based thin-film structures to tackle the growing menace of plastics

Tekoäly auttaa patologia

Kirjoittajalta Tekniikan edistämissäätiö / 24.9.2019

Tekoäly auttaa patologia 24.9.2019/Text: Kimmo Kartasalo Onko koneellisesti suoritettu syöpädiagnoosi osoitus muovikuorien sisällä surisevasta älystä? Tämä kysymys on muodostunut kahvipöydän kestosuosikiksi kehittäessämme koneoppimismenetelmää eturauhassyövän diagnosoimiseksi digitalisoiduista koepaloista. Niin sanottuihin syviin neuroverkkoihin pohjautuvat koneoppimisen menetelmät ovat viime vuosina näyttäneet kyntensä niin autoilussa kuin lautapeleissä – ja valloitettavia ongelmia ammennetaankin väitöskirjatyöni tapaan yhä enemmän myös lääketieteestä.   … Jatka artikkeliin Tekoäly auttaa patologia

What will the Future Wireless Networks be?

26.8.2019/Text: Kien Vu

Kien Vu

The deployment of the fifth generation (5G) networks is going to change our lives and transform our businesses. The unprecedented growth of data traffic driven mainly by a massive number of wireless connected devices (mobile phones, laptops, sensing devices) and rich content applications (video and game streaming, augmented and virtual reality) are posing unforeseen challenges in terms of extreme data rate, low latency, high reliability, and large scalability.


5G technologies for mobile broadband

The 5G wireless systems are expected to meet these unprecedented challenges, which require a paradigm shift in system design and radio technologies. In this research, the author studies the main 5G technologies, concerning higher frequency bands, large antenna array, and dense small cells to support new and diverse use-case scenarios and applications for future wireless networks. The author proposes a new system design, integrated in-band access and backhaul architecture, which jointly schedules a large number of users and provides in-band wireless backhaul to a dense deployment of small cell base stations. The main objective is to achieve extreme data rate, low-latency with reliability constraints in the presence of network dynamics by applying advanced signal processing techniques, mathematical optimization frameworks, and deep reinforcement learning tools.


Research Impacts

The research lies on the fundamental of wireless communications in which several questions are addressed. One of the most important questions is how to support extreme data rate, low latency, and reliable communication in 5G networks and beyond. This research contributes novel ideas to enrich user experiences, industrial productivity and efficiency of public sectors for the Finnish communities and the development of 5G networks over the world.


Research Results

The author would like to acknowledge the Finnish Foundation for Technology Promotion and other funding to support his doctoral studies. The author was able to finalize his doctoral dissertation, which consists of several research articles.

Read more: https://www.oulu.fi/university/researcher/kien-vu


About the author: Kien Vu has joined the Centre for Wireless Communications as a doctoral student and started his doctoral degree studies on June 16th, 2015 at University of Oulu Graduate School, Finland. He received the incentive grant from the Finnish Foundation for Technology Promotion to study new radio access technologies to enable multiple Gigabits of data rate and ultra-reliable and low latency communications for 5G wireless networks and beyond.

Uusimmat artikkelit

Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen

Kirjoittajalta Tekniikan edistämissäätiö / 9.10.2019

Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen 9.10.2019/Text: Mikael Ritamäki Kevyempää tehoelektroniikkaa paremmilla muoveilla Muovikondensaattoreita käytetään esimerkiksi tehoelektroniikassa, jota käytetään uusiutuvan sähköenergian siirtoon vaikkapa merituulivoimapuistoista kulutuskeskuksiin. Nykyisellä tekniikalla toteutetut muovikondensaattorit ovat luotettavia mutta varsin isoja ja painavia: parempia sähköeristemateriaaleja kehitetään, jotta kondensaattoreita käyttävistä laitteista saataisiin pienempiä ja kevyempiä. Varsinkin sähköverkkosovelluksissa muovikondensaattoreita vaaditaan pitkää, kymmenien vuosien käyttöikää, joten uusia … Jatka artikkeliin Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen

Bio-based thin-film structures to tackle the growing menace of plastics

Kirjoittajalta Tekniikan edistämissäätiö / 30.9.2019

Bio-based thin-film structures to tackle the growing menace of plastics 30.9.2019 / text: Aayush Jaiswal The world is turning into a global village and consequently, food products from around the world are becoming ubiquitous in the store where you buy your grocery every week. Have you ever wondered what keeps these products fresh and delicious? … Jatka artikkeliin Bio-based thin-film structures to tackle the growing menace of plastics

Tekoäly auttaa patologia

Kirjoittajalta Tekniikan edistämissäätiö / 24.9.2019

Tekoäly auttaa patologia 24.9.2019/Text: Kimmo Kartasalo Onko koneellisesti suoritettu syöpädiagnoosi osoitus muovikuorien sisällä surisevasta älystä? Tämä kysymys on muodostunut kahvipöydän kestosuosikiksi kehittäessämme koneoppimismenetelmää eturauhassyövän diagnosoimiseksi digitalisoiduista koepaloista. Niin sanottuihin syviin neuroverkkoihin pohjautuvat koneoppimisen menetelmät ovat viime vuosina näyttäneet kyntensä niin autoilussa kuin lautapeleissä – ja valloitettavia ongelmia ammennetaankin väitöskirjatyöni tapaan yhä enemmän myös lääketieteestä.   … Jatka artikkeliin Tekoäly auttaa patologia

"Post doc -poolin apurahalla on ollut merkittävä vaikutus uran myönteiseen kehittymiseen"

21.8.2019

Matti Kaisti

Sain Tekniikan edistämissäätiön apurahan Post doc -poolin syyshaussa vuonna 2017 tutkimusaiheelleni “Digital DNA sensing system for automatic detection of infectious diseases”.  Suoritin Post doc -tutkimusvuoteni Lontoossa Imperial College London -yliopistossa.

Tutkimuskauden aikana pääsin tutustumaan useampaan uuteen tutkimusryhmään, jotka tekevät kunnianhimoista ja poikkitieteellistä tutkimusta uusien sensoriteknologioiden saralla. Vuoden aikana sain edistettyä omaa diagnostisten menetelmien tutkimusta ja tehtyä yhteistyötä Imperial College London tutkijoiden kanssa. Tutkimuksen pohjalta on valmisteilla kansainvälinen julkaisu, jossa esitellään uusien DNA sensoreiden toimintaa. Lisäksi tutkijavuosi mahdollisti tutustumisen uusiin tutkimushankkeisiin fysiologisen sensoreiden saralla, josta on myös valmisteilla kansainvälinen julkaisu.

Luotujen verkostojen ansiosta on tällä hetkellä myös suunnitteilla yhteisiä rahoitushakuja, joiden avulla syntynyttä tutkimusyhteistyötä voidaan ylläpitää.

Tällä hetkellä toimin vanhempana tutkijana Turun Yliopiston Tulevaisuuden Teknologioiden laitoksella vakituisessa virassa. Tekniikan Edistämissäätiön apurahalla on ollut merkittävä vaikutus uran myönteiseen kehittymiseen sekä uusien tutkimussuuntien ja yhteistyökumppaneiden löytämisessä.

Kirjoittaja: Matti Kaisti

Uusimmat artikkelit

Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen

Kirjoittajalta Tekniikan edistämissäätiö / 9.10.2019

Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen 9.10.2019/Text: Mikael Ritamäki Kevyempää tehoelektroniikkaa paremmilla muoveilla Muovikondensaattoreita käytetään esimerkiksi tehoelektroniikassa, jota käytetään uusiutuvan sähköenergian siirtoon vaikkapa merituulivoimapuistoista kulutuskeskuksiin. Nykyisellä tekniikalla toteutetut muovikondensaattorit ovat luotettavia mutta varsin isoja ja painavia: parempia sähköeristemateriaaleja kehitetään, jotta kondensaattoreita käyttävistä laitteista saataisiin pienempiä ja kevyempiä. Varsinkin sähköverkkosovelluksissa muovikondensaattoreita vaaditaan pitkää, kymmenien vuosien käyttöikää, joten uusia … Jatka artikkeliin Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen

Bio-based thin-film structures to tackle the growing menace of plastics

Kirjoittajalta Tekniikan edistämissäätiö / 30.9.2019

Bio-based thin-film structures to tackle the growing menace of plastics 30.9.2019 / text: Aayush Jaiswal The world is turning into a global village and consequently, food products from around the world are becoming ubiquitous in the store where you buy your grocery every week. Have you ever wondered what keeps these products fresh and delicious? … Jatka artikkeliin Bio-based thin-film structures to tackle the growing menace of plastics

Tekoäly auttaa patologia

Kirjoittajalta Tekniikan edistämissäätiö / 24.9.2019

Tekoäly auttaa patologia 24.9.2019/Text: Kimmo Kartasalo Onko koneellisesti suoritettu syöpädiagnoosi osoitus muovikuorien sisällä surisevasta älystä? Tämä kysymys on muodostunut kahvipöydän kestosuosikiksi kehittäessämme koneoppimismenetelmää eturauhassyövän diagnosoimiseksi digitalisoiduista koepaloista. Niin sanottuihin syviin neuroverkkoihin pohjautuvat koneoppimisen menetelmät ovat viime vuosina näyttäneet kyntensä niin autoilussa kuin lautapeleissä – ja valloitettavia ongelmia ammennetaankin väitöskirjatyöni tapaan yhä enemmän myös lääketieteestä.   … Jatka artikkeliin Tekoäly auttaa patologia

Puolijohdelaserien tutkimus avaa uusia ratkaisuja itseohjautuviin autoihin, lääketieteeseen ja piifotoniikkaan

27.10.2017/Text: Antti Aho

Antti Aho, optoelektroniikka, Tampereen teknillinen yliopisto

Laservaloa käytetään nykyään monissa arkisissa sovelluskohteissa, kuten dvd- ja blu-ray-soittimissa, op­tisessa tiedonsiirrossa sekä viivakoodinlukijoissa. Tulevaisuudessa sovellusalojen kirjo näyttää vain kas­vavan. Laserien suorituskyvyn ja ominaisuuksien kehittyessä niitä voidaan käyttää tavoilla, jotka yh­dessä muun tekniikan kehityksen kanssa mahdollistavat uusien teknologioiden yleistymisen.

Olen suorittanut jatko-opintojani reilun vuoden verran Optoelektroniikan tutkimuskeskuksessa TTY:llä ja kerron tässä lyhyesti sovelluskohteista, joihin puolijohdelaserien kehitys­pro­jek­tim­me liittyvät. Tutkimuksessamme korostuu selkeästi kaksi puolta: materiaalitutkimus hyvälaatuisen lasermateriaalin valmistamiseksi sekä valmistustekniikoiden kehitys laadukkaiden komponenttien tuottamiseksi.

Sensoreita itseohjautuviin autoihin

Yksi suurimmista yhteiskuntaa tulevaisuudessa muokkaavista hankkeista lienee itseohjautuvien autojen kehittäminen. Monta teknistä ongelmaa on kuitenkin ratkaistava, ennen kuin autonomiset kulkuneuvot voivat yleistyä, ja yksi näistä ongelmista on autojen sensorijärjestelmä. Robottiautot voivat kerätä tietoa ympäristöstään useilla eri menetelmillä, joista yksi on LIDAR eli optinen tutka. Kehitämme täl­laiseen LIDAR-järjestelmään soveltuvaa kompaktia puolijohdelaseria, joka pyrkii ratkaisemaan kak­si ongelmaa: silmäturvallisuusvaatimuksista aiheutuvat tehorajoitteet sekä huonoista sää­olo­suh­teis­ta, kuten sumusta, johtuvan suorituskyvyn heikkenemisen.

Keltaista valoa kompaktisti

Puolijohdelaserit ovat käytännöllisiä ja pienikokoisia valonlähteitä moneen sovellukseen. Yksi niiden merkittävä ongelma kuitenkin on, että tietyillä aallonpituuksilla laserdiodien valoteho ja hyötysuhde ovat huonoja, ja kaikkia aallonpituuksia ei ole lainkaan mahdollista tuottaa suoraan. Eräs ongelmallinen aallonpituusalue on keltaisen ja oranssin valon välimaastossa, ja tällaisella laservalolla olisi so­vel­luskohteita mm. lääketieteessä ja spektroskopiassa. Lähestymistapamme ongelman ratkaisuun on tuttu esimerkiksi vihreistä laserpointtereista: kehitämme infrapuna-alueella emittoivaa suu­ri­tehoista laserdiodia, jonka säteilemän valon aallonpituus puolitetaan taajuuskahdennuskiteellä. Näin on mahdollista rakentaa pienikokoinen, keltaista valoa emittoiva komponentti. Tähän tutkimuskohteeseen liittyen väitöskirjani ensimmäinen vertaisarvioitu artikkeli on juuri julkaistavana (https://doi.org/10.1109/LPT.2017.2760038).

Sulautettuja valonlähteitä piifotoniikkaan

Piifotoniikalla tarkoitetaan sovellusalaa, jossa piialustaa käytetään valon ohjaamiseen ja muokkaamiseen, ja sillä on useita käyttökohteita tiedonsiirrosta signaalinkäsittelyyn. Vaikka pii on hallitseva materiaali perinteisessä elektroniikassa, sitä ei voida käyttää valon synnyttämiseen tai vahvistamiseen, joten optisesti aktiiviset komponentit täytyy valmistaa muista materiaaleista. Ryhmämme tutkii tapoja sulauttaa nämä valonlähteet suoraan piifotoniikkapiirille, jolloin piireistä on mahdollista rakentaa pienikokoisempia ja monipuolisempia.

Antti Aho työskentelee väitöskirjatutkijana Optoelektroniikan tutkimuslaitoksella Tampereen teknillisellä yliopistolla tutkimusalanaan suuritehoiset, kapean viivanleveyden laserdiodit. Hän sai Tekniikan edistämissäätiöltä apurahaa jatko-opintoihinsa vuonna 2017.

Uusimmat artikkelit

Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen

Kirjoittajalta Tekniikan edistämissäätiö / 9.10.2019

Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen 9.10.2019/Text: Mikael Ritamäki Kevyempää tehoelektroniikkaa paremmilla muoveilla Muovikondensaattoreita käytetään esimerkiksi tehoelektroniikassa, jota käytetään uusiutuvan sähköenergian siirtoon vaikkapa merituulivoimapuistoista kulutuskeskuksiin. Nykyisellä tekniikalla toteutetut muovikondensaattorit ovat luotettavia mutta varsin isoja ja painavia: parempia sähköeristemateriaaleja kehitetään, jotta kondensaattoreita käyttävistä laitteista saataisiin pienempiä ja kevyempiä. Varsinkin sähköverkkosovelluksissa muovikondensaattoreita vaaditaan pitkää, kymmenien vuosien käyttöikää, joten uusia … Jatka artikkeliin Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen

Bio-based thin-film structures to tackle the growing menace of plastics

Kirjoittajalta Tekniikan edistämissäätiö / 30.9.2019

Bio-based thin-film structures to tackle the growing menace of plastics 30.9.2019 / text: Aayush Jaiswal The world is turning into a global village and consequently, food products from around the world are becoming ubiquitous in the store where you buy your grocery every week. Have you ever wondered what keeps these products fresh and delicious? … Jatka artikkeliin Bio-based thin-film structures to tackle the growing menace of plastics

Tekoäly auttaa patologia

Kirjoittajalta Tekniikan edistämissäätiö / 24.9.2019

Tekoäly auttaa patologia 24.9.2019/Text: Kimmo Kartasalo Onko koneellisesti suoritettu syöpädiagnoosi osoitus muovikuorien sisällä surisevasta älystä? Tämä kysymys on muodostunut kahvipöydän kestosuosikiksi kehittäessämme koneoppimismenetelmää eturauhassyövän diagnosoimiseksi digitalisoiduista koepaloista. Niin sanottuihin syviin neuroverkkoihin pohjautuvat koneoppimisen menetelmät ovat viime vuosina näyttäneet kyntensä niin autoilussa kuin lautapeleissä – ja valloitettavia ongelmia ammennetaankin väitöskirjatyöni tapaan yhä enemmän myös lääketieteestä.   … Jatka artikkeliin Tekoäly auttaa patologia