We are developing new machine olfactomics for various applications


Markus Karjalainen (2)

When you write the application for foundations, you write your research as promising as you can, to maximize the probability to get the funding. Now when I have got it and spent it. It is time to reflect whether I have done planned tings.

When designing machine noses the heat mapping is a helpful tool

Technical challenges

Since last spring, we have greatly progressed on technical issues. Back then, we struggled with contaminating the measurement instrument. It was contaminated after few samples, and we had to clean it repeatedly to get the thing work. For success, we needed hundreds of proper measurements in a row, so the needed improvement was quite significant.

To manage the contamination, first we tried the common medicine in artificial olfactomics: heating. It helped, but not as much as we needed. Then after studying the subject deeper, we got to the field of aerosol technology. There we got a good idea with help of aerosol researcher Dr. Sampo Saari. Actually, it turned to be a little too good idea. I mean economically promising. Economically interesting ideas always slows the research, since it is not possible to ignore the patenting options et cetera.

During these studies, we got one good study on smoke particles, and issue related to people’s health. (These results will be published soon.) After the episode with contamination and smoke, our system worked a far better, but some time had gone as well. Now we could measure samples pretty much, as we planned in the research plan.

Machine learning

After the machine learning has been applicable for sensor technology, the paradigm of many automated measurement has been changed quite significantly. Earlier, engineers needed to know every function inside the machine. Now with machine learning it is enough that you design proper hardware, so that, the machine gets repeatable and rational input, containing the critical information. Then, with a proper teaching methods machine really learns how to interpret result correctly. This seems to be especially effective in fields where you have complex measurement results, but you need only yes, or no, or a small amount of possible final answers. In long run, it is amazing to think how machines might work in the future, could they reach understanding? Could they choose between own and common good?

The next thig in our research was to tackle the sample consumption. Since the machine learning and the principle of our measurements, we could not exactly say how the most important information is spread to the measurement spectrum. That is why it was beneficial to measure with higher details and resolution than needed, and later we could optimize and decrease the spectrum resolution. We tested this improved technology, with test samples, and it seemed to work fine. The sample consumption was decreased at least hundred times, but experiments with valuable samples and meaningful for our society are still on the way.

So did I reach the plans in the research plan? Yes and no. We could greatly improve the system, we got good meaningful results and the research is going on fine on significant subject. Also no, there should be more public results available. Combining an economically driven and common good driven research is challenging. I’m just thinking that if on some day, machines would struggle on moral issues, should we give them a warm and sarcastic welcome party, or encourage them not to give up if they fall.


Markus Karjalainen is a doctoral student in Tampere University of Technology. He is doing research in gas spectroscopy and artificial olfactomics. He got annual TES grant for making the doctoral thesis.

Uusimmat artikkelit

Mikrometallien myötämisen monimutkaisuudet

Kirjoittajalta Marianna / 15.10.2020

Mikrometallien myötämisen monimutkaisuudet 15.10.2020/Teksti: Henri Salmenjoki Kaikki tietävät, miten käy, kun jääkylmää jäätelöä yrittää kaivaa paketista heiveröisellä lusikalla: jäätelö jää pakettiin ja lusikka vääntyy. Tämä niin sanottu materiaalin myötäminen (eli merkittävä peruuttamatton muodonmuutos) on tutkmukseni lähtökohtana, mutta materiaalien ollessa mikrometrien kokoluokassa olevia metalleja. Tällöin myötämisessä tärkeässä roolissa ovat purskeet ja dislokaatiot – niistä seuraavassa. Myötäminen … Jatka artikkeliin Mikrometallien myötämisen monimutkaisuudet

Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen

Kirjoittajalta Tekniikan edistämissäätiö / 9.10.2019

Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen 9.10.2019/Text: Mikael Ritamäki Kevyempää tehoelektroniikkaa paremmilla muoveilla Muovikondensaattoreita käytetään esimerkiksi tehoelektroniikassa, jota käytetään uusiutuvan sähköenergian siirtoon vaikkapa merituulivoimapuistoista kulutuskeskuksiin. Nykyisellä tekniikalla toteutetut muovikondensaattorit ovat luotettavia mutta varsin isoja ja painavia: parempia sähköeristemateriaaleja kehitetään, jotta kondensaattoreita käyttävistä laitteista saataisiin pienempiä ja kevyempiä. Varsinkin sähköverkkosovelluksissa muovikondensaattoreita vaaditaan pitkää, kymmenien vuosien käyttöikää, joten uusia … Jatka artikkeliin Suorituskykymittarien kehitys kondensaattorieristeiden tuotekehitykseen

Bio-based thin-film structures to tackle the growing menace of plastics

Kirjoittajalta Tekniikan edistämissäätiö / 30.9.2019

Bio-based thin-film structures to tackle the growing menace of plastics 30.9.2019 / text: Aayush Jaiswal The world is turning into a global village and consequently, food products from around the world are becoming ubiquitous in the store where you buy your grocery every week. Have you ever wondered what keeps these products fresh and delicious? … Jatka artikkeliin Bio-based thin-film structures to tackle the growing menace of plastics