Huoneenlämpötilan kvantti-ilmiöitä valjastamassa
9.2.2021/Text: Antti Moilanen
Tietokoneet ovat muuttaneet elämäämme monin tavoin, mutta niiden perustana toimivan elektroniikan kehityskulku alkaa tulla tiensä päähän. Tietoa siirtyy internetin kautta yhä suurempia määriä, kun striimaamme teräväpiirtolaatuisia ohjelmia kotisohvilta ja älypuhelimemme toistavat loputtomasti videoita somen uutissyötteissä. Parempi kuvan- ja äänenlaatu tarkoittaa suurempaa käsiteltävää datamäärää.
Lisäksi uudet koneoppimista hyödyntävät sovellukset vaativat valtavia määriä tietoa tekoälyn treenaamiseen. Tekoälyä kaivataan avuksi erilaisten globaalien kriisien, kuten luonnonkatastrofien ja pandemioiden selättämisessä. Toisaalta samaan aikaan energiankulutusta tulisi vähentää merkittävästi. Entistä tehokkaampien laskentateknologioiden kehittämiseen panostetaankin nyt paljon ympäri maailman.
Valosta uudenlaisia laskukoneita
Nykyaikaisen tietokoneen toiminta perustuu transistoreihin, joita käytetään sähkövirran vahvistimina, kytkiminä ja muistin osina. Transistorien ensimmäinen kaupallinen käyttökohde oli IBM 608 -laskukone vuodelta 1955. Laskukoneessa oli 3000 transistoria, mikä oli huima määrä tuohon aikaan. Mooren laki on ennustanut 1970-luvulta lähtien mikropiirin transistorien lukumäärän tuplaantuvan joka toinen vuosi, ja nykyään yhdellä mikropiirillä voi olla useampi miljardi transistoria. Pakkaamalla yhä enemmän transistoreja yhä pienempään tilaan, olemme onnistuneet rakentamaan taskukokoisia laitteita, joissa on moninkertaisesti laskentakapasiteettia verrattuna huoneenkokoisiin ensimmäisiin tietokoneisiin. Olemme kuitenkin saavuttaneet elektroniikan kehityksessä pisteen, jossa transistoreja ei pian enää voida pakata pienempään tilaan.
Optiset piirit, joissa kulkee valo sähkövirran sijaan, voivat mullistaa tiedonsiirron tulevaisuuden. Optiset piirit kykenevät toimimaan merkittävästi nopeammin ja pienemmällä energiankulutuksella, kuin elektroniset piirit. Sähkövirran häviöt asettavat ylärajan elektronisten laitteiden toimintanopeudelle, sillä sähkövirran kuljettajien eli elektronien siirtämiseen paikasta toiseen kuluu energiaa. Sen sijaan optisten piirien toimintanopeudet yltävät valonnopeuteen saakka. Toisaalta optisten piirien käyttöönoton haasteena on niiden yhteensovittaminen elektroniikan komponenttien kanssa, sillä valon kuljettajat eli fotonit eivät luonnostaan vuorovaikuta elektronien kanssa.
Kvanttivallankumouksen kynnyksellä
Väitöstyössäni tutkin pieniä metallisia rakenteita, joiden avulla valo saadaan kytkettyä metallin elektroneihin. Kun fotonit kytkeytyvät elektroneihin, valo saadaan tiivistettyä aallonpituutta pienempään tilaan. Tämä mahdollistaa muun muassa erilaisten kvantti-ilmiöiden havaitsemisen, joista yksi esimerkki on väitöstyössäni havaittu ensimmäinen valosta ja elektroneista koostuva Bosen-Einsteinin kondensaatti (HS ja T&T linkit alla).
Vuoden 2019 aikana kävin tutkimusvierailulla IBM:n Sveitsin laboratoriossa, jossa sain mahdollisuuden tutustua sekä transistoripohjaisten laskukoneiden historiaan, että kvanttitietokoneen kehittämiseen. Ensimmäisten kvanttitietokoneiden kehitys nojaa teknologiaan, joka vaatii jäähdytystä lähelle absoluuttista nollapistettä (-273 astetta). Väitöstyössäni tutkittujen rakenteiden etu on, että ne toimivat huoneenlämpötilassa. Työ on vielä varhaisessa vaiheessa käytännön sovellutuksia ajatellen, mutta ilman perustutkimusta ei teknologiakaan kehity. Apurahalla tuetun tutkimusvierailun myötä voi todeta, että vaikka pitkälle on tultu ensimmäisestä laskukoneesta, olemme vasta uuden ajanjakson kynnyksellä.
Antti Moilanen työskentelee Aalto-yliopiston perustieteiden korkeakoulussa tohtorikoulutettavana. Hän sai Tekniikan edistämissäätiöltä kannustusapurahan jatko-opintoihinsa Aalto-yliopistossa vuonna 2019.
Lue lisää aiheesta:
Helsingin Sanomat, Läpimurto Suomessa: Valosta ja elektroneista syntyi kvanttitiivistymä Aalto-yliopistossa, https://www.hs.fi/tiede/art-2000005645499.html
Tekniikka & Talous, Albert Einsteinin 100 vuotta sitten ennustaman ilmiön rajoja ei vielä tunneta – Suomalaistutkijat pääsivät taas askeleen pidemmälle, https://www.tekniikkatalous.fi/uutiset/albert-einsteinin-100-vuotta-sitten-ennustaman-ilmion-rajoja-ei-viela-tunneta-suomalaistutkijat-paasivat-taas-askeleen-pidemmalle/f9138691-57bb-3304-8940-74d4787e22c2
Lue lisää tutkimusryhmän työstä: https://www.aalto.fi/en/department-of-applied-physics/quantum-dynamics-qd
Uusimmat artikkelit
Farmaseuttisten tablettien jatkuvatoiminen valmistus – Kaupallisesta erävalmistuksesta jatkuvatoimisen prosessoinnin tutkimukseen
Farmaseuttisten tablettien jatkuvatoiminen valmistus – Kaupallisesta erävalmistuksesta jatkuvatoimisen prosessoinnin tutkimukseen Jenna Lyytikäinen Jatkuvatoiminen valmistus kiinnostaa myös lääketeollisuutta Jatkuvatoiminen prosessointi on käytössä useilla eri teollisuuden aloilla sen etujen ansiosta. Lääketeollisuus on monista eri syistä, kuten aiemmasta lääkeviranomaisten suhtautumisesta johtuen kuitenkin pitäytynyt perinteisessä erävalmistuksessa. Erävalmistus vaatii henkilökunnalta välituotteiden siirtoa, paljon tilaa ja monia…
Molybdenum sulfides with bismuth halide perovskites for better photocatalysis
Molybdenum sulfides with bismuth halide perovskites for better photocatalysis By He Zhao Clean hydrogen from photocatalysis Hydrogen is regarded as a promising energy carrier for the future world. Solar-driven photocatalysis provides a cleaner and more sustainable approach for hydrogen production, which would not produce any carbon footprint theoretically. This reaction of…
Spatiotemporal probing and control of nonlinear optical phenomena in 2D materials using unconventional states of polarization (ARTEMIS)
Spatiotemporal probing and control of nonlinear optical phenomena in 2D materials using unconventional states of polarization (ARTEMIS) By Riya Varghese The first year of my doctoral studies deals with the learning and acquiring of the necessary experimental skills needed to accomplish the proposed research. For example, I received training on the use of several…